17
Likelihoods for the odds ratio

The data from a simple case-control study (exposed and unexposed) can
be arranged as a 2 x 2 table such as that set out in Table 17.1. We saw
in Chapter 16 that there are two ways in which the probability model for
a case-control study can be set up but that, for both models, the ratio of
odds parameters are equal to the ratio of odds of failure in the study base.

17.1 The retrospective log likelihood

As in Chapter 16, we write Qg for the odds of exposure among controls,
and €, for the odds of exposure among cases. Our interest is in the odds
ratio parameter 6 = 2, /g, so we change from the parameters Qg and Q,
to the parameters Qo and 6, and regard Q as a nuisance parameter. The
total log likelihood is the sum of the log likelihood for 29 based on the split
of the H controls between exposed and unexposed, and the log likelihood
for ©, (= 0€Q0) based on the split of D cases,

Hylog($20) — Hlog(1+ Q) + D;log(69%) — Dlog(1 + 69%).

To use this log likelihood for estimating of the odds ratio 0, we form a
profile log likelihood by replacing Q by its most likely value for each value
of . Unlike the profile log likelihood for the rate ratio in cohort studies,
this curve cannot be expressed as a simple algebraic expression, but the
results of section 13.4-and Appendix C can be used to derive a Gaussian
approximation.

This derivation follows from the fact that the log odds ratio is the dif-
ference between two log odds parameters,

log(8) = log(€;) — log(Q).
Table 17.1. Notation for the 2 x 2 table

Exposure Cases Controls Total subjects

EXpOSBd D1 H1 N] = D1 -+ H1
Unexposed Dy Hy Ny=Dy+ H,y
Total D H N=D+H
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These are estimated from two independent bodies of data and have most

likely values
Dl (Hl >
= e M = 1 e )
M; =log <D0> , 0 = 108 H,

and standard deviations
1 1 1 1
=4/7+ 7 So=4/= + =
Sl Dl + DO, 1] Hl HO

It follows from general results given in section 13.4 and Appendix C that
the most likely value of the log odds ratio is

M = M —M
D, /Dy )
= lo
¢ (Hl/Ho
and the standard deviation of the Gaussian approximation to the log like-
lihood is

S = V(51)?+ (5)?

1 1 1 1
\/D1 o E T H
This can be used to calculate an error factor for the odds ratio and hence
an approximate 90% confidence interval.

The expression for S only differs from that for the rate ratio in a cohort
study by the addition of the two last terms. These are reciprocals of ‘.che
counts of controls and represent the loss of precision incurred by carrying
out a case-control study rather than a cohort study. Once the number
of controls is substantially larger than the number of cases, this loss (?:E
precision becomes negligible. Hence the common assertion that there is
little to be gained by drawing more than four or five times as many controls
as cases.

Exercise 17.1. For the study of BCG vaccination and leprosy discussed in
Chapter 16, calculate the expected result of the study using

(a) the same number of controls as cases;

(b) twice as many controls as cases; and

(c) five times as many control as cases. .
Compare the corresponding values of S with that achieved by using the entire
population as controls.

Carried out algebraically, these calculations lead to the general result that
the ratio of the standard deviation of an estimate from a case-control study
to the standard deviation from a cohort study yielding the same number
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of cases is
V14 (1/m)

where m is the number of controls expressed as a multiple of the number
of cases. When m = 1 this expression shows that the standard deviation
is 1.41 times higher in a case-control study than in a cohort study. When
m = 5 the factor reduces to 1.10 and when m = 10 this reduces only 3 little

more to 1.05. The behaviour of this expression as m increases confirms the.

impression of the last exercise — that there is little gain in efficiency to be
obtained by selecting more than five times as many controls as cases.

THE NULL HYPOTHESIS § = 1

We can calculate an approximate p-value for the null hypothesis using
using any one of the three methods we have encountered earlier. The log
likelihood ratio test is now based on the profile log likelihood. The Wald
test is calculated by comparing the most likely value of the odds ratio with
the null value, log(f) = 0, by calculating

M -0\

5 .
Finally, the score test can be derived using the general relationships set
out in Appendix C. At the null hypothesis the two odds parameters are
equal and their most likely common value is N /Ny. The score, U, is found

from the gradient of the profile log likelihood with respect to log(2) at
this point, which turns out to be

U = Di—-E
~(Dg — Ey),

where

N No

E,=D— =D—
1 N; EO D N

can be thought of as the expected numbers of exposed and unexposed

cases under the null hypothesis. The score variance is obtained from the

curvature of the profile log likelihood at the null value § = 1, which yields

v _ DHNoN,
o)

As usual, an approximate p-value can be obtained by referring (U)?/V to
the chl-squared distribution on one degree of freedom.
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Table 17.2. Tonsillectomy and Hodgkins disease

Tonsillectomy Cases Controls  Total subjects
Positive 90 (D1) 165 (H;) 255 (Ny)
Negative 84 (Do) 307 (Ho) 391 (No)
Total 174 (D) 472 (H) 646 (N)

Exercise 17.2. Table 17.2 shows data from a study of the relationship between
tonsillectomy and the incidence of Hodgkin’s disease.* Calculate the maximum
likelihood estimate of @ with a 90% confidence interval, and calculate a p-value
for 6 = 1.

17.2 The prospective log likelihood

We now turn to the log likelihood we obtain using the prospective proba-
bility model. As in Chapter 16, we write w; for the odds that an exposed
subject is a case, wp for the corresponding odds for an unexposed subject,
and change to (wo,d) where § = w;/wy. The log likelihood is again the
sum of two Bernoulli log likelihood terms,

Dylog(wo) — Nolog(l +wo) + Djlog(fuwp) — Nylog(l + buwo),

and the profile log likelihood is obtained by replacing wo by its most likely
value at each value of 8. As with the retrospective model, this does not
lead to a simple algebraic expression, but the Gaussian approximation can
easily be derived, since

log(9) = log(w1) — log(wo)

and the log likelihoods for log(w;) and log(wg) are based on independent
sets of data. The most likely values of w; and wy are

D
wies () Mo=tes (7).

and the corresponding standard deviations are

11 T 1
= —_— —— S = —_— _—
51 Vo, T °=\Dp, T &,

As before, the most likely value of log(6) is

M = M —-M

*From Johnson, S.K: and Johnson, R.E. (1972) New England Journal of Medicine,
287, 1122-1125.



170 LIKELIHOODS FOR THE ODDS RATIO

log (Dl / Hl)
Do/ Hy
and the standard deviation of the Gaussian approximation to the log like-
lihood is

S = V(S1)*+ (So)2

= \/D1 A D0+_

These results are exactly the same as we obtained using the retrospective
argument. In the same way we can show that the log likelihood ratio
and score tests are identical for the two approaches. Indeed, some further
mathematics shows that the profile log likelihoods for the two arguments
are identical. This continues to be the case for more complex patterns of
exposure and, since the prospective approach is more convenient in these
situations, it is to be preferred.

17.3 The hypergeometric likelihood

Both the probability models discussed above contain a nuisance parameter
in addition to the parameter of interest, §. Both lead to profile log likeli-
hood for § and depend on profile likelihood behaving in the same way as a
true likelihood.

When there is sufficient data, the profile log likelihood does indeed be-
have in this way. However, profile likelihoods are obtained by estimating
the nuisance parameters, and it is only safe to assume that they have the
same properties as true likelihoods if the accuracy of that estimation in-
creases as the total number of subjects increases. If the number of nuisance
parameters increases with the number of subjects, this improved estimation
is not achieved and profile likelihoods can be misleading. This happens in
case-control studies if, as the total number of subjects increases, the study
is divided into an increasing number of small strata in an attempt to deal
with confounding. For either the prospective or the retrospective likeli-
hood it is necessary to introduce a separate nuisance parameter for each
stratum, so the number of parameters will increase with the number ‘of
subjects. The worst case is the individually matched case-control study
in which the number of strata (and nuisance parameters) is equal to the
number of case-control pairs. It turns out that the use of profile likelihood
methods in this situation leads to wrong answers.

An alternative way of eliminating the nuisance parameter is a condi-
tional approach based on a probability model in which both margins of the
2 x 2 table (Table 17.1) are fixed. The set of probabilities for all splits of
subjects which maintain the same marginal totals is known as the hyper-

geometric distribution. For the table shown in Table 17.1, the probability
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is
1 O™
K(0) © D,!Do!H,!Hy!

where K(6) is chosen so that the probabilities for all possible tables with
the same margins add up to one:

K@= Y (6>
- RTNTZATAR
Possible tables Dy!Dy!H, ' Hyp!

This distribution depends only on the parameter § and can be used to cal-
culate exact p-values and confidence intervals for the odds ratio as outlined
in Chapter 12. The use of these methods is illustrated in section 17.4.

The likelihood based on this distribution is called the hypergeometric
likelihood. Because of the function K(#), it is difficult to calculate except
when the number of possible tables consistent with the margins is small.
We shall consider an important special case in Chapter 19 and give a more
general treatment of this likelihood in Chapter 29. For the present we
note that the hypergeometric likelihood does lead to a simple score test for
8 = 1. The score is exactly the same as for the profile log likelihoods, that
is

U=D, - E,

but the score variance ¢can be shown to be

V= DHNyN,
SR -1

This differs from the expression derived from the curvature of the profile
log likelihood by the term (N — 1) in place of N in the denominator.
The difference this makes to the value of the variance is usually negligible.
The one situation where it does make a difference is in matched studies
where the number of subjects in each stratum is very small. In the worst
case of the 1:1 individually matched study, N = 2 in every stratum and
the profile likelihood argument wrongly estimates the score variance by a.
factor of two. We shall, therefore, return to the hypergeometric likelihood
when discussing the analysis of individually matched case-control studies
in Chapter 19.

17.4 Exact methods

The use of the hypergeometric distribution for exact tests and confidence

intervals follows exactly the same principles as set out in Chapter 12. This
is illustrated in this section using some data drawn from a case-control
study set up to investigate an excess of childhood leukaemia cases in the
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Table 17.3. Paternal radiation exposure in leukaemia cases and controls

Paternal Leukaemia  Local 5
exposure cases controls Total
> 100 mSv (Exposed) 3 1 4
< 100 mSv (Unexposed) 1 19 20
Total 4 20 24

Table 17.4. Hypergeometric log likelihood ratios and probabilities

LLR Hypergeometric probability
D, (6=1) (@=1) (0=2.440) (0=1534.1)

0 -0.785  0.455957  0.202245

1 -0.105 0.429136  0.464450 0.000001

2 -1.451 0.107284  0.283314 0.000460

3 -4.252  0.007529  0.048511 0.049540

4 -9.271 0.000094  0.001480 0.949998
Total 1.0 1.0 1.0

vicinity of a nuclear reprocessing plant (see Exercise 11.8). The data set
out in Table 17.3 concern occupational radiation exposure in fathers of 4
cases and fathers of 20 local controls.!-

There are five possible tables with- the same margins as Table 17.3,
with values of D; (the number of exposed cases) ranging from zero to four.
The hypergeometric distribution gives the conditional probability for each
table as a function of the odds ratio parameter, 6, and the log likelihood
for any value of § is calculated by taking the log of the probability of the
observed outcome D; = 3. The most likely value of 8 is 37.345% and the log
likelihood ratio which compares this with the null value (f = 1) is —4.252.
Table 17.4 shows, in the column headed LLR, similar log likelihood ratio
comparisons for each of the five possible tables and, in the next column,
the conditional probabilities of these tables when the null hypothesis is
true. The p-value is the sum of probabilities of the observed table and of
all tables. which are in greater conflict with the null value. In this case
p = 0.007529+0.000094 = 0.007623. The one-sided and two-sided p-values
are identical in this case. This way of calculating the p-value for a 2 x 2
table is called Fisher’s ezact test.

Similar ideas are used to calculate ‘exact’ confidence intervals. To find

tFrom Gardner, M.J. et al. (1990) British Medical Journal, 300, 423-429.

#Note that this is not the same value as that obtained with the profile likelihood
which is (3 x 19)/(1 x 1) = 57.
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the limits of the 90% interval we search for values of # which give one-sided
p-values of 0.05. These values are 2.440 (lower limit) and 1534.1 (upper
limit) and the corresponding hypergeometric distributions are shown in
the last two columns of Table 17.4. At 8 = 2.440 the one-sided p-value is
0.048511 + 0.001480 = 0.04991 and at & = 1534.1 the one-sided p-value is
0.000001 + 0.000460 + 0.049540 = 0.050001. Values of 8 outside the range
from 2.440 to 1534.1 would have smaller p-values than 0.05 and the fre-
quentist theory would therefore suggest that we should pronounce ourselves
90% confident that  lies within this range. As we have seen in Chapter 12,
this is a very technical use of the word confident and no epidemiologist
would really believe that 6 could really take such large values. The ex-
treme finding is obtained, at least to some extent, because the radiation
level chosen here to divide exposed and unexposed groups was chosen after
seeing the data.

Solutions to the exercises

17.1 The following shows the expected results of the three studies. These
have been calculated by splitting the controls between scar present and
scar absent categories in the proportions 46 028/80622 and 34 594/80 622
respectively.

Expected controls
BCG scar Cases Population (a) (b) (c)

Present 101 46028 148 296 740
Absent 159 34594 112 224 560
Total 260 80622 260 520 1300

The standard deviations for the log odds ratio estimate are worked out us-
ing the formula S = \/1/Dg + 1/D; + 1/Hp + 1/H, and are 0.179, 0.155,
and 0.139 respectively. The standard deviation using the full data is 0.127.
The gain in precision with increasing numbers of controls clearly follows a
law of diminishing returns.

17.2 The maximum likelihood estimate of 8 is the observed odds ratio:

90/84
—— =1.99.
165/307 L9
and
1 1 1 1
S—\/8—4+%+W+i€5—0.180.

For calcuiating 90% confidence limits, the error factor is exp(1.645x0.180) =
1.34. The limits are therefore 1.99/1.34 = 1.48 (lower limit) and 1.99 X
1.34 = 2.67 (upper limit).
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The expected number of exposed cases is given by

255
E; =174 % 615 = 68.68

so that the score, U, is (90 — 68.68) = 21.32. The score variance is

174 x 472 x 255 x 391

GOE = 30.37.

The score test is (21.32)2/30.37 = 14.97, (p < 0.001).

F_____,V_.‘ R
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